Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
arxiv; 2022.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2206.02788v1

ABSTRACT

Rapid identification of newly emerging or circulating viruses is an important first step toward managing the public health response to potential outbreaks. A portable virus capture device coupled with label-free Raman Spectroscopy holds the promise of fast detection by rapidly obtaining the Raman signature of a virus followed by a machine learning approach applied to recognize the virus based on its Raman spectrum, which is used as a fingerprint. We present such a machine learning approach for analyzing Raman spectra of human and avian viruses. A Convolutional Neural Network (CNN) classifier specifically designed for spectral data achieves very high accuracy for a variety of virus type or subtype identification tasks. In particular, it achieves 99% accuracy for classifying influenza virus type A vs. type B, 96% accuracy for classifying four subtypes of influenza A, 95% accuracy for differentiating enveloped and non-enveloped viruses, and 99% accuracy for differentiating avian coronavirus (infectious bronchitis virus, IBV) from other avian viruses. Furthermore, interpretation of neural net responses in the trained CNN model using a full-gradient algorithm highlights Raman spectral ranges that are most important to virus identification. By correlating ML-selected salient Raman ranges with the signature ranges of known biomolecules and chemical functional groups (for example, amide, amino acid, carboxylic acid), we verify that our ML model effectively recognizes the Raman signatures of proteins, lipids and other vital functional groups present in different viruses and uses a weighted combination of these signatures to identify viruses.

2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.04.446928

ABSTRACT

Rapid identification of newly emerging or circulating viruses is an important first step toward managing the public health response to potential outbreaks. A portable virus capture device coupled with label-free Raman Spectroscopy holds the promise of fast detection by rapidly obtaining the Raman signature of a virus followed by a machine learning approach applied to recognize the virus based on its Raman spectrum. In this paper, we present a machine learning analysis on Raman spectra of human and avian viruses. A Convolutional Neural Network (CNN) classifier specifically designed for spectral data achieves very high accuracy for a variety of virus type or subtype identification tasks. In particular, it achieves 99% accuracy for classifying influenza virus type A vs. type B, 96% accuracy for classifying four subtypes of influenza A, 95% accuracy for differentiating enveloped and non-enveloped viruses, and 99% for differentiating avian coronavirus (infectious bronchitis virus, IBV) from other avian viruses. Furthermore, interpretation of neural net responses in the trained CNN model using a full-gradient algorithm highlights Raman spectral ranges that are most important to virus identification. By correlating ML-selected salient Raman ranges with the signature ranges of known biomolecules and chemical functional groups (e.g. amide, amino acid, carboxylic acid) we verify that our ML model effectively recognizes the Raman signatures of proteins, lipids and other vital functional groups present in different viruses and uses a weighted combination of these signatures to identify viruses. The accurate and interpretable machine learning model developed for Raman virus identification presents promising potential in a real-time virus detection system. Significance Statement A portable micro-fluidic platform for virus capture promises rapid enrichment and label-free optical identification of viruses by Raman spectroscopy. A large Raman dataset collected on a variety of viruses enables the training of machine learning (ML) models capable of highly accurate and sensitive virus identification. The trained ML models can then be integrated with the portable device to provide real-time virus detection and identification capability. We validate this conceptual framework by presenting highly accurate virus type and subtype identification results using a convolutional neural network to classify Raman spectra of viruses.


Subject(s)
Bronchitis , Influenza, Human
3.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2103.05546v2

ABSTRACT

COVID-19, a new strain of coronavirus disease, has been one of the most serious and infectious disease in the world. Chest CT is essential in prognostication, diagnosing this disease, and assessing the complication. In this paper, a multi-class COVID-19 CT segmentation is proposed aiming at helping radiologists estimate the extent of effected lung volume. We utilized four augmented pyramid networks on an encoder-decoder segmentation framework. Quadruple Augmented Pyramid Network (QAP-Net) not only enable CNN capture features from variation size of CT images, but also act as spatial interconnections and down-sampling to transfer sufficient feature information for semantic segmentation. Experimental results achieve competitive performance in segmentation with the Dice of 0.8163, which outperforms other state-of-the-art methods, demonstrating the proposed framework can segments of consolidation as well as glass, ground area via COVID-19 chest CT efficiently and accurately.


Subject(s)
COVID-19 , Coronavirus Infections , Communicable Diseases
SELECTION OF CITATIONS
SEARCH DETAIL